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A Symmetry-Aware Exploration of 
Bayesian Neural Network Posteriors
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6 - Scaling Symmetries & Representation Cost

4 - Uncertainty, Performance & Posterior approx. estimation 7 - How to Estimate the Posterior?

3 - The Impact of Symmetries on the Bayesian Posterior

2 - Notations & Theory

TorchUncertainty

❖ ★ Open-source library for leveraging predictive uncertainty 

quantification techniques ★ Includes classification, 

regression, segmentation & monocular depth estimation.

❖ Pre-trained weights on Hugging Face        .

“Checkpoints” @.---
Easy to download models & scripts:

❖ 1,024 ResNet-20 FRN/SiLU – CIFAR-10

❖ 2,048 ResNet-18 – CIFAR-10

❖ 9,216 ResNet-18 – CIFAR-100

❖ 2,048 ResNet-18 – TinyImageNet
Checkpoints

5 - Functional Collapse & Diversity

We show that the minimization of the L2 norm of the weights - the 

representation cost - over scaling symmetries is log-log strictly convex.

Unique solution found via convex optimization.

github.com/torch-uncertainty

However, in modern deep neural networks, there exists a large or infinite number 

of equivalent weight configurations [5]:

❖ Scaling the weights by sequences of coefficients and their inverses leaves 

the function unchanged.

❖ Reordering the weights using sequences of permutation matrices and their 

inverses does not change the function.

Symmetries impact optimization, generalization via the loss landscape.

What is the impact of symmetries on Bayesian posteriors and their 

estimation by uncertainty quantification methods?

Contributions

A - Express the theoretical impact of perm./scale symmetries on the posterior.

B - Evaluate & discuss the impact of symmetries on UQ methods.

C - The min. of the weight decay on scaling symmetries has a unique solution.

D - “Checkpoints”: dataset of medium-sized independently trained models.

Prior

We follow practitioners and work with i.i.d. Gaussian priors: weight decay.

Batch normalization degenerate problem.

We take 1000 independent networks from “Checkpoints” and 
compute mutual information over the test set for each pair.  

Mass profiles of simple ConvNets

Gaussian-regularized training (weight

decay) empirically never converges

towards the minimal scaling coefficient

for the scaled representation cost.

Negligible gradients vs. SGD noise.

The indices of the maximum weights of HMC are not uniform.

Multiple techniques exist to estimate the Bayesian posterior of DNNs: variational

inference Bayesian networks [7], Hamiltonian Monte Carlo (HMC) [8], and its

stochastic versions [9], Laplace methods, and ensembles [1, 4]. Izmailov et al.

[10] have shown that HMC can be scaled to ResNet-20 and CIFAR-10 (albeit at

very high memory expense).

Although more theoretically grounded, HMC chains exhibit autocorrelation and

their stochastic alternatives are not very reliable. Ensembles still favor local

minima but we argue that it is a minor issue considering the countless number of

minima in very high dimensions. See the paper for a more detailed discussion.

Corollary: , for all i, j at layer l.

Pairwise mutual information - ResNet-18 - CIFAR-100/SVHN

Very low dispersion of the in-distribution diversity.

Greater dispersion of the OOD diversity.

ID & OOD diversities seem only very 
weakly correlated.

We report the performance of various methods that approx. the Bayesian posterior and compute the 

Maximum Mean Discrepancy (MMD) [6] with a ground-truth posterior of indpt. checkpoints (see 7-).

Comparison of popular methods approximating the Bayesian posterior - ResNet-18

Calibration Out-of-distribution detectionPosterior quality Diversity

A — Perf. & Aleatoric Uncertainty

Multi-mode methods obtain 

better scores in accuracy, calibration 

and Brier score i.e. better aleatoric

uncertainty estimation.

B — Epistemic Uncertainty

Multi-mode methods 

consistently perform better.

No clear correlation with 

posterior quality estimation.

C — ID & OOD Diversity

Multi-mode methods exhibit

more diversity either in- and out-

of-distribution.

, for all i, j at layer l.

Corollary:

With independent and layer-wise constant initializations,  

The (possibly multivariate) posterior distribution of the weights of a given 

feature/channel is constant.

This corollary is not respected by most uncertainty quantification methods, 

including HMC (see 7-).

？

BAYESIAN MODELS & UNCERTAINTY IN DEEP LEARNING

Most successful deep learning uncertainty quantification methods — Deep

Ensembles [1], SWA(G) [2], Laplace, Monte-Carlo Dropout [3], etc — seek to

approximate the Bayesian posterior via marginalization over the weights [4]:

Scaling symmetries

Permutation symmetries

x, y: inputs and targets
D: data distribution
▽, ⊳: row-wise and col.-wise products 1 λ 1

T(ω, λ) T(ω, λ-1)

Scaling symmetries & activations

Proposition:

With      the r.v. of the scaled and sorted weights, the final posterior is a 

continuous mixture of discrete mixtures of the “original” posterior                 :

Link to the website
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