universite **PARIS-SACLAY**

1 - Motivation & Contributions
Most successful deep learning uncertainty quantification methods – If
Ensembles [1], SWA(G) [2], Laplace, Monte-Carlo Dropout [3], etc – see
approximate the Bayesian posterior via marginalization over the weights [4]

$$p(y \mid \boldsymbol{x}, \mathcal{D}) = \int_{\boldsymbol{\omega} \in \Omega} p(y \mid \boldsymbol{x}, \boldsymbol{\omega}) p(\boldsymbol{\omega} \mid \mathcal{D}) d\boldsymbol{\omega}.$$

However, in modern deep neural networks, there exists a large or infinite nu
of equivalent weight configurations [5]:
Scaling the weights by sequences of coefficients and their inverses leav
the function unchanged.
Reordering the weights using sequences of permutation matrices and the
inverses does not change the function.

→ Symmetries impact optimization, generalization via the loss landscape.

What is the impact of symmetries on Bayesian posteriors and their estimation by **uncertainty quantification** methods?

Contributions

- **A** Express the **theoretical impact** of perm./scale **symmetries** on the **posterior**.
- **B** Evaluate & discuss the **impact** of symmetries on **UQ** methods.
- **C** The min. of the weight decay on scaling symmetries has a unique solution.

D - "Checkpoints": dataset of medium-sized independently trained models.

Prior

We follow practitioners and work with *i.i.d.* Gaussian priors: weight decay.

Proposition:

With Ω the *r.v.* of the scaled and sorted weights, the final posterior is a continuous mixture of discrete mixtures of the "original" posterior $p(\Omega \mid \mathcal{D})$:

$$p(\mathbf{\Omega} \mid \mathcal{D}) = |\Pi|^{-1} \int_{\Lambda \in \mathbb{A}} \sum_{\Pi \in \Pi} \mathcal{T}_p(\mathcal{T}_s(p(\tilde{\mathbf{\Omega}} \mid \mathcal{D}), \Lambda), \Pi) p(\Lambda) d\Lambda.$$

Corollary:

With independent and layer-wise constant initializations,

 $p(\boldsymbol{\omega}_{i,j}^{[l]}|\mathcal{D}) = p(\boldsymbol{\omega}_{0,j}^{[l]}|\mathcal{D})$, for all i, j at layer l.

 \rightarrow The (possibly multivariate) posterior distribution of the weights of a given feature/channel is constant.

 \rightarrow This corollary is not respected by most uncertainty quantification methods, including HMC (see 7-).

A Symmetry-Aware Exploration of **Bayesian Neural Network Posteriors**

Olivier Laurent, Emanuel Aldea & Gianni Franchi[†] ♦ gianni.franchi@ensta-paris.fr

4 - Uncertainty, Performance & Posterior approx. estimation -

We report the performance of various methods that approx. the Bayesian posterior and compute the Maximum Mean Discrepancy (MMD) [6] with a ground-truth posterior of indpt. checkpoints (see 7-).

		Posterior quality				Calibration		Out-of-distribution detection Diversity Λ				
		Method	$MMD\downarrow$	$NS\downarrow$	Acc \uparrow	ECE \downarrow	ACE \downarrow	Brier \downarrow	AUPR \uparrow	FPR95 \downarrow	$\mathbf{ID}\mathbf{MI}\downarrow$	OOD MI ↑
CIFAR100	One Mode	Dropout	4.5	7.5	74.2	14.7	3.2	38.8	76.4	47.7	5.7	9.1
		viBNN	9.0	10.2	57.9	24.6	3.0	63.7	60.9	79.1	2.7	4.2
		SWAG	6.7	7.2	70.9	2.3	1.2	38.9	86.2	48.0	2.4	6.3
		Laplace	5.7	7.0	75.1	0.9	0.9	34.6	81.3	42.4	27.6	63.3
		SGHMC	7.5	7.9	73.7	4.9	1.0	36.2	79.4	62.3	0.2	0.5
	le	Dropout	0.7	4.5	79.5	4.3	1.0	29.2	78.2	48.1	20.5	46.3
	100	viBNN	6.1	5.6	66.5	2.8	2.0	45.3	71.9	71.7	45.5	81.1
	i N	SWAG	5.0	5.4	72.8	1.5	1.1	36.9	89.1	50.6	6.5	19.7
	ult	Laplace	0.6	4.3	78.9	6.9	0.8	30.3	82.9	41.3	44.1	98.5
	Ĭ	DE	0.0	0.0	79.5	1.6	0.6	28.7	81.1	45.6	22.5	58.0
TinyImageNet	de	Dropout	9.5	4.9	63.2	16.4	2.4	53.9	48.8	81.1	8.3	8.4
	Mo	SWAG	9.1	3.9	66.4	10.5	0.7	46.2	61.9	57.7	3.0	4.5
	e	Laplace	5.5	6.1	33.1	6.0	3.6	77.1	48.8	77.7	200.7	228.0
	On	SGHMC	9.8	5.3	58.3	2.6	1.0	54.1	56.3	72.7	0.24	0.30
	le	Dropout	4.3	1.8	70.2	9.9	1.2	42.1	74.8	58.2	34.1	60.0
	100	SWAG	6.7	5.4	69.3	3.6	0.6	41.3	96.5	55.9	17.6	32.1
	2	Laplace	0.5	3.1	37.0	10.9	3.3	75.1	48.4	72.5	219.5	254.7
	Ν	DE	0.0	0.0	70.3	6.5	0.7	40.9	86.3	50.2	38.4	83.4

Comparison of popular methods approximating the Bayesian posterior - ResNet-18

A – Perf. & Aleatoric Uncertainty

→ Multi-mode methods obtain **better** scores in accuracy, calibration and Brier score *i.e.* better aleatoric uncertainty estimation.

B – Epistemic Uncertainty

→ Multi-mode methods consistently **perform better**. → No clear correlation with posterior quality estimation.

5 - Functional Collapse & Diversity

We take 1000 independent networks from "Checkpoints" and compute mutual information over the test set for each pair.

 \rightarrow Very low dispersion of the in-distribution diversity. → Greater dispersion of the OOD diversity.

→ ID & OOD diversities seem only very weakly correlated.

C – ID & OOD Diversity

→ Multi-mode methods exhibit more diversity either in- and outof-distribution.

very high memory expense).

[2] Wesley J. Maddox et al. A simple baseline for bayesian uncertainty in deep learning. In NeurIPS, 2019. [6] Le Song. Learning via hilbert space embedding of distributions. University of Sydney, 2008. [7] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural network. In ICML, 2015. [8] Radford M. Neal. MCMC using Hamiltonian dynamics. Handbook of markov chain monte carlo, 2011. [9] Ruqi Zhang, et al. Cyclical stochastic gradient MCMC for bayesian deep learning. In ICLR, 2020. [10] Pavel Izmailov et al. What are Bayesian neural network posteriors really like? In ICML, 2021

