A Symmetry-Aware Exploration of Bayesian DNN Posteriors

Olivier Laurent, Emanuel Aldea, Gianni Franchi

Laurent, Aldea & Franchi

Motivations

Most successful deep learning uncertainty quantification methods — Deep Ensembles, SWA(G), MC Dropout, etc — seek to approximate the Bayesian posterior via marginalization over the weights:

$$p(y \mid \boldsymbol{x}, \mathcal{D}) = \int_{\boldsymbol{\omega} \in \Omega} p(y \mid \boldsymbol{x}, \boldsymbol{\omega}) p(\boldsymbol{\omega} \mid \mathcal{D}) d\boldsymbol{\omega}$$

However, in modern deep neural networks, there exists a large or infinite number of corresponding weight configurations.

- Scaling the weights by sequences of coefficients and their inverses leaves the function unchanged.
- Reordering the weights using sequences of permutation matrices and their inverses does not change the function.
- → Symmetries impact optimization, generalization via the loss landscape.
- **?** What is the impact of symmetries on Bayesian posteriors and their estimation by uncertainty quantification methods?

Contributions & Presentation layout

- A Express the theoretical impact of perm./scaling symmetries on the posterior.
- B Evaluate & discuss the impact of symmetries on UQ methods through quantitative performance & diversity analysis.
- **C** The min. of the weight decay on scaling symmetries has a unique solution.
- D "Checkpoints": dataset of medium-sized independently trained models.

Notations & Theory

- → Permutation symmetries
- → Scaling symmetries
- → other symmetries (partially accounted for)

Proposition:

With the *r.v.* of the scaled and sorted weights, the final posterior is a continuous mixture of discrete mixtures of the "original" posterior $p(\tilde{\Omega} \mid \mathcal{D})$:

$$p(\Omega \mid \mathcal{D}) = |\Pi|^{-1} \int_{\Lambda \in \mathbb{A}} \sum_{\Pi \in \Pi} \mathcal{T}_p(\mathcal{T}_s(p(\tilde{\Omega} \mid \mathcal{D}), \Lambda), \Pi) p(\Lambda) d\Lambda$$

Corollary:

With independent and layer-wise constant initializations, $p(\omega_{i,j}^{[l]}|\mathcal{D}) = p(\omega_{0,j}^{[l]}|\mathcal{D})$, for all i, j at layer l.

Uncertainty Performance & Posterior quality estimation

A — Perf. & Aleatori	c Unc	Unceostation to Vality				Calibration			00D detection		Diversity	
						\sum						
→ Multi-mode methods of	otMinpdo	etter	ŠĘO	r∕es↑	$\text{ECE}\downarrow$	$\text{ACE} \downarrow$	Brier \downarrow	AUPR \uparrow	FPR95 \downarrow	$\mathbf{IDMI}\downarrow$	OOD MI↑	
	<u>Dr</u> opout	4.5	7.5	74.2	14.7	3.2	38.8	76.4	47.7	5.7	9.1	
in accuracy, calibration are	d Barrine r	søøre	e 10,€.	57.9	24.6	3.0	63.7	60.9	79.1	2.7	4.2	
Ξ	SWAG	6.7	7.2	70.9	2.3	1.2	38.9	86.2	48.0	2.4	6.3	
better aleatoric unceltai	n Itaplaça	tima	ti7on	75.1	0.9	0.9	34.6	81.3	42.4	27.6	63.3	
	SGHMC	7.5	7.9	• 73.7	4.9	1.0	36.2	79.4	62.3	0.2	0.5	
B — EpistemičU	Dropout	0.7	4.5	79.5	4.3	1.0	29.2	78.2	48.1	20.5	46.3	
	CORNIN	in⊅₩	5.6	66.5	2.8	2.0	45.3	71.9	71.7	45.5	81.1	
	SWAG	5.0	5.4	72.8	1.5	1.1	36.9	89.1	50.6	6.5	19.7	
Et al state of the	Laplace	0.6	4.3	78.9	6.9	0.8	30.3	82.9	41.3	44.1	98.5	
- Multi-mode methods 🗟	nstere	nt¶ิง	0.0	79.5	1.6	0.6	28.7	81.1	45.6	22.5	58.0	
	Dropout	9.5	4.9	63.2	16.4	2.4	53.9	48.8	81.1	8.3	8.4	
nerform hetter 🛛 🕏 🖣	SŴAG	9.1	3.9	66.4	10.5	0.7	46.2	61.9	57.7	3.0	4.5	
	Laplace	5.5	6.1	33.1	6.0	3.6	77.1	48.8	77.7	200.7	228.0	
→ No clear correlation wa	<u>ϯ┡</u> ͡ᠻᠯᠯᡗᢅᡪᡪ	terior	- 5.3	58.3	2.6	1.0	54.1	56.3	72.7	0.24	0.30	
	Dropout	4.3	1.8	70.2	9.9	1.2	42.1	74.8	58.2	34.1	60.0	
quality estimation	SWAG	6.7	5.4	69.3	3.6	0.6	41.3	96.5	55.9	17.6	32.1	
quality contractor. $E \Sigma$	Laplace	0.5	3.1	37.0	10.9	3.3	75.1	48.4	72.5	219.5	254.7	
X	ĎЕ	0.0	0.0	70.3	6.5	0.7	40.9	86.3	50.2	38.4	83.4	

 C — ID & OOD Diversity. Comparison of popular methods approximating
→ Multi-mode methods exhibite Bayesian posterior - ResNet-18 diversity either in- and out- of-distribution.

Functional Collapse & Diversity

We take 1000 independent networks from "Checkpoints" and compute mutual information over the test set for each pair.

$$\mathbf{MI} = \mathcal{H}\left(\frac{1}{M}\sum_{m=1}^{M} P_{\boldsymbol{\omega}_m}(\hat{y}|\boldsymbol{x}, \mathcal{D})\right) - \frac{1}{M}\sum_{m=1}^{M} \mathcal{H}(P_{\boldsymbol{\omega}_m}(\hat{y}|\boldsymbol{x}, \mathcal{D}))$$

Pairwise mutual information - ResNet-18 - CIFAR-100/SVHN

- → Very low dispersion of the in-distribution diversity.
- → Greater dispersion of the OOD diversity.

→ ID & OOD diversities seem only very weakly correlated.

Scaling Symmetries & Representation Cost

The minimization of the L2 norm of the weights (the representation cost)

$$m^* = \min_{\Lambda \in \mathbb{A}} |\mathcal{T}_s(\bar{\boldsymbol{\omega}}, \Lambda)|_2^2$$

over scaling symmetries is log-log strictly convex.

→ Unique solution found via convex optim.

Gaussian-regularized training (weight decay) empirically never converges towards the minimal scaling coefficient for the scaled representation cost.

→ Negligible gradients vs. SGD noise.

Mass profiles of simple ConvNets

 \triangle Batch normalization \rightarrow degenerate problem.

Dataset & PyTorch Library

"Checkpoints" @ 😔

Easy to download models & scripts:

- 1,024 ResNet-20 FRN/SiLU CIFAR-10
- 2,048 ResNet-18 CIFAR-10
- 9,216 ResNet-18 CIFAR-100
- 2,048 ResNet-18 TinylmageNet

huggingface.co/torch-uncertainty

Open-source uncertainty for deep learning models in PyTorch 🔭

Uncertainty-aware routines for training classification, segmentation, regression & monocular depth in PyTorch with lightning.

torch-uncertainty.github.io

ICLR 2024